Variation of nanopores cross sections obtained by etching of swift heavy ions tracks in olivine irradiated along different crystallographic directions

S. A. Gorbunov^{1,*}, M. V. Gorshenkov⁴, P. A. Babaev¹, G. V. Kalinina¹, R. A. Rymzhanov³, R. A. Voronkov¹, A. E. Volkov^{1,2}

d) Etching •WN-solition: 40g EDTA, 1g oxalic acid, 1ml orthophosphoric acid, 100мл вода

Results Atomic-force microscopy AISN-NT Smart SP 1000

Molecular dynamics of structure transformations in lattice [3]

Structure transformation of Mg_2SiO_4 lattice after Xe 156MeV ion

Original algorithm of determination and remove of the surface atoms

Results

On the each stage of simulation Mg atoms with the smallest bounding energy is primary removed. SiO₄ with 1 or 0 Mg bounding atoms are removed then

Nanopores with elliptical cross Nanopores with elliptical cross section ~60*120nm section ~120*300nm

Pore shape depends on crystal orientation

Conclusion

•Etching of olivine, irradiated with swift heavy ions, may be used for the synthesis of nanopores with non-circle cross sections.

• Simulation demonstrates that the shape of cross section of nanopores may be controlled by rotation of crystal axes relatively to the beam direction.

The study was funded by Russian science foundation № 22-22-00676, s://rscf.ru/project/22-22-00676/ Simulation were performed on NRC "Kurchatov Institute" cluster, http://ckp.nrcki.ru

References

[1] S A Gorbunov et. al, 2017, J. Phys. D: Appl. Phys. 50 395306

[2] S.A. Gorbunov, et. al, J. Phys. Chem. C 2023, 127, 10, 5090-5097

[3] N. A. Medvedev, et. al, Journal of Applied Physics 133, 100701 (2023)