INVESTIGATION OF THE BEHAVIOR OF THE SURFACE ROUGHNESS OF THE MAIN ORIENTATIONS OF SINGLE-CRYSTAL SILICON DURING ETCHING BY ACCELERATED IONS OF INERT GASES

<u>М.С. Михайленко</u>, А.Е. Пестов, А.К. Чернышев, М.В. Зорина, Н. Кумар, Н.И. Чхало, Н.Н. Салащенко

Отдел многослойной рентгеновской оптики, Институт физики микроструктур РАН, ул. Академическая, д. 7, Нижний Новгород, Россия

e-mail: mikhaylenko@ipmras.ru

Введение

Развитие современных источников рентгеновского излучения, а именно лазеров на свободных электронах и синхротронов 3+ и 4-го поколения ставят перед исследователями новые фундаментальные и технологические задачи. В части разработки оптики для монохроматизации, фокусировки, коллимации и т.п. существенно повышаются требования на качество как структуры элемента (кристаллическая или многослойная), так и его поверхности (форма и шероховатость). Современные требования к элементам скользящего падения приближаются к требованиям накладываемым на точность формы элементов нормального падения ЭУФ и МР диапазонов длин волн, а именно среднеквадратическое отклонение формы поверхности на уровне 1 нм, а шероховатость лучше 0.2-0.3 нм [1]. Для задач монохроматизации необходима высококачественная кристаллическая структура. Наиболее перспективным материалом для этих целей рассматривается монокристаллический кремний. По своим теплофизическим свойствам данный материал имеет массу преимуществ над другими, использующимися в качестве подложек для многослойных рентгеновских зеркал, такими как ситалл, Zerodur, плавленый кварц и т.п. В мире кремний как правило обрабатывают на ультрапрецизионном микрофрезерном станке с алмазным резцом. Эта технология достаточно неплохо отработана, но имеет ряд недостатков, с которым следует потом долго бороться. Это формирующийся приповерхностный нарушенный слой и повышенная шероховатость в частности борозды с шагом резца. Единственным на данный момент способом доведения формы поверхности до требуемых параметров по RMS и значений шероховатости является ионно-пучковые методы коррекции, в частности IBF. Для реализации метода IBF оптимальным является поддержание локальной нормали к поверхности подложки, таким образом основной задачей данной работы является изучение поведения шероховатости поверхности основных срезов монокристаллического кремния в зависимости от энергии и сорта ионов инертных газов (Ar, Ne и Xe).

Развитая поверхность

Развитая поверхность после ионной бомбардировки (СЭМ)

Описание экспериментов

Все эксперименты проводились на стенде, подробно описанной в [2] на стандартных пластинах монокристаллического кремния (100), (110) (111) для микроэлектронной промышленности с исходной шероховатостью на уровне 0,25 нм. Шероховатость поверхности измерялась на атомно-силовом микроскопе (ACM) NTegra в диапазоне пространственных частот 0.049-63 мкм⁻¹. Значение шероховатости оценивалось методом PSD-функции [3].

Результаты и обсуждения

Нормальное падение ионов на поверхность образцов

Угловые зависимости шероховатости и коэф. распыления

Коэффициенты распыления	При коррекции локальных ошибок	Шероховатость поверхности
1.8 1.8 1.5 1.5 Ar 300 3B 1.2 0.9 [0 3 5] [1 1 1]	формы оптических элементов малоразмерным ионным пучком обработка осуществляется при бобработка осуществляется при бобработка покальной нормали к обрабржании локальной нормали к обрабржании локальной точке обрабржании локальной и обрабржании и обрабржании локальной и обрабржании локальной и обрабржании и обрабржании покальной и обрабржании	6 5 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	полировке широкоапертурным d^{V} квазипараллельным ионным пучком -	

30 40 50 60

Angle of incidence

практически линейную зависимость от глубины (времени) травления. Латеральные размеры неоднородностей также увеличиваются с увеличением глубины травления.

Сканы поверхности после ионного травления (АСМ)

Изучение нарушенного слоя

 $\mathcal{A}_{\mathsf{r} \to \mathsf{r} \to \mathsf$

Angle of incidence (grad)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 5

Спектр КРС для длины волны 325 нм (а и б); Положение пика и ширина линии моды TO неимплантированного и имплантированного:. 1 – Xe⁺ 600 eV, 1.1×10^{18} ions/cm²; 2 – Xe⁺ 850 eV, 1.1×10^{18} ions/cm²; 3 – Xe⁺ 1000 eV, 1.1×10^{18} ions/cm²; 4 – Ar⁺ 425 eV, 3.9×10^{18} ions/cm²; 5 – Ar⁺ 425 eV, 7.9×10^{18} ions/cm²; 6 – Ar⁺ 800 eV, 3.9×10^{18} ions/cm²; 7 – Ar⁺ 800 eV, 7.9×10^{18} ions/cm².

Благодарности: работа выполнена при финансовой поддержке гранта РНФ № 21-72-30029.

Литература:

10 20 30 40 50 60 70

Angle of incidence

[1] P. Brumund, J. Reyes-Herrera, C. Detlefs et al., "Design simulations of a horizontally deflecting high-heat-load monochromator," J. Synchrotron Rad., 28, 91–103 (2021); [2] M.S. Mikhailenko, N.I. Chkhalo, I.A. Kaskov, I.V. Malyshev, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.N. Toropov, I.G. Zabrodin // Precision Engineering. Volume 48, April 2017, Pages 338-346; [3] N.I. Chkhalo, N.N. Salashchenko, M.V. Zorina, "Note: A stand on the basis of atomic force microscope to study substrates for imaging optics", Rev. Sci. Instrum. 86 (1), 016102 (3 pp.) (2015).