

Исследование теплообмена высокоплотной плазмы низкого давления с кремниевыми пластинами методом лазерной интерферометрии.

Investigation of heat exchange of high-density low-pressure plasma with silicon wafers by laser interferometry.

М. О. Изюмов

M. O. Izyumov

Ярославский Филиал Физико-технологического института имени К. А. Валиева РАН, Ярославль , Россия, mikhail-izyumov@yandex.ru

Введение

Исследование взаимодействия низкотемпературной плазмы с поверхностью представляет интерес как для физики газового разряда, так для микро- наноэлектроники и микромеханики. Контроль температуры полупроводниковых пластин важен при их плазменной обработке в вакууме. Например, в процессах травления во фторуглеродной плазме скорость травления, анизотропия и селективность травления сильно зависят от температуры Si пластины.

1. Установка и описание экспериментов

температуры исследованиях измерение проводилось Si пластины наших автоматизированным лазерным термометром [1]. Луч лазера ЛГН-113 (λ=1,15мкм) падал на пластину по нормали, отраженное излучение детектировалось фотоприемником и регистрировалось компьютером. При изменении температуры пластины изменялась ее оптическая толщина и наблюдалась последовательность резонансов Фабри-Перо. Обработка интерферограммы, с учетом известной температурной зависимости коэффициента преломления монокристаллического Si [2] приводила к построению зависимости T(t). Для исследования теплообмена Si пластины с высокоплотной плазмой низкого давления были проведены эксперименты с электростатическим прижимом пластины (ЭСП) к охлаждаемому анодированному алюминиевому (AI) держателю при ее обработке в плазме. Установка и прижим подробно описаны в [1] и [3].

2. Обработка результатов эксперимента

Исследования показали, что поглощаемая Si пластиной тепловая мощность в высокоплотной индукционной Ar плазме низкого давления, определяется в основном ионной бомбардировкой поверхности. Температура газа в плазме близка к температуре стенок реактора, так как при p_{Ar}=0,18 Па число Кнудсена близко к 1. Даже при температуре стенок 250°С нагрев пластины газом незначителен, вследствие его разреженности. Поэтому начальная А=А₀+W_{sb}/S,,где S площадь ЭСП равная 230 см². Величина А₀=0,137 Вт/см² определяется плотностью ионного потока на пластину [6] и плазменным потенциалом U_f=25 В. Коэффициент теплопередачи α=α_{конт}+α_{Не}, где α_{конт}=0,00044 Вт×см⁻²×К⁻¹ – контактный коэффициент теплопередачи через участки ЭСП, контактирующие с пластиной, α_{не} - газовый коэффициент теплопередачи через гелий под пластиной, α_{не}=2,0×10⁻⁵×р_{не} (Па) близок к приведенному в [7]. Коэффициент теплопередачи тепловым излучением от Si пластины до 150°C значительно меньше. Определив экспериментально все эти коэффициенты, решив дифференциальное уравнение для D(T) получаем временную зависимость температуры Si пластины $T(t)=T_{st}-(T_{st}-t)$ T_0)×*exp(-t/* τ), где τ - является константой скорости нагревания и τ =*crh/* α .Рассчитанные зависимости хорошо совпадали с экспериментальными.

Схема плазменного реактора **Diagram of a plasma reactor**

Устройство электростатического прижима **Electrostatic clamping device**

1- диск из сплава АМг6, 2- ВЧ электрод вакуумной установки, 3- теплопроводящая паста, 4- анодно-оксидное покрытие, 5кремниевая пластина, 6- дополнительный контакт для работы без плазмы, 7фторопластовая трубка для подачи гелия, 8- кварцевая трубка, 9- внутренний радиальный канал, 10- кольцевой канал, 11- загрузочная кассета.

Experiment and calculation of heating, cooling of a silicon wafer, lying freely on the helium clamp $p_{He}=0$

Следует отметить, что если величина А определяется только параметрами плазмы, и α_{He} определяется только давлением Не, то а_{конт} в зависимости от изогнутости пластин варьируется от 0,00025 до 0,00065 Вт×см⁻²×К⁻¹. Но это несущественно в случае охлаждения Si пластины He, где *а*_{*He*} на два порядка выше.

кольцевой кассеты с пластиной; 4кольцевая кассета; 5электростатический прижим; 6 – трубка для подачи гелия; 7 – лазер (λ=1,15мкм); 8-фотоприемник; 9-компьютер.

Эксперименты проводилась при следующих условиях: ВЧ мощность на индукторе W_{ind}=850 Вт, давление аргона р_{Ar}=0,18 Па. ВЧ мощность на электрод W_{sb} и давление гелия под пластиной р_{не} варьировались. Порядок экспериментов был такой: Si пластина загружалась на электростатический прижим и в реактор подавался аргон. В начале подавалось рабочее напряжение на прижим U_w=150÷200 В, затем ВЧ мощность на индуктор W_{ind} и ВЧ мощность на электрод W_{sb}, загоралась плазма (режим нагрева). Через некоторое время после включения разряда под пластину подавался гелий (режим охлаждения) и температура стабилизировалась при T_{st} (см рис).

Дифференцированием зависимости T(t) получали плотность тепловой мощности, поглощаемой или отдаваемой пластиной P/S=D(T)=c×p×h×dT/dt. Где с, р - теплоемкость и плотность кремния; h – толщина кремниевой пластины [4]. Линейный характер зависимостей D(T) (см рис) свидетельствует о том, что они описываются законом Ньютона для теплопередачи [5] $D(T)=\alpha \times (T_0-T)$, где α - коэффициент теплопередачи, TO – температура

Когда пластина или ее часть присоединяется теплопроводящей пастой к AI кассете, *а_{конт}* для кассеты варьируется от 0,00045 до 0,0005 Вт×см⁻²×К⁻¹, и *а_{Не}=*4,1×10⁻⁵ × *р_{Не}* (Па). Температура Si пластины отличается от температуры Al кассеты не более чем на 6⁰C, при W_{sb}=100Bт.

Для процессов плазменного травления идущих с экзотермическим эффектом возможно рассчитать T(t), зная удельную теплоту процесса и площадь, где идет реакция и ее скорость. Например, удаление фоторезиста с 100% площади пластины со скоростью 1 мкм/мин дает такое же увеличение A, как при W_{sb} =10 Bт. Травление Si с плазме SF₆ со скоростью 3 мкм/ми с 10% площади эквивалентно увеличению W_{sb} на 180 Вт.

Основные результаты

Установлено, что основной причиной нагрева Si пластины в высокоплотной Ar плазме низкого давления является ионная бомбардировка. При подаче на электрод ВЧ мощности, более 90% от ее величины идет на нагрев пластины. Теплообмен через газ (до 0,5Па) и тепловым излучением от нагретого экрана (до 200°С) незначительны.

Эффективными теплоотводами являются: контактный теплоотвод В=0,00045 Вт/см²*К, теплоотвод *гелием* при 1000Па В=*0,042* Вт/см²*К, теплоотвод *силиконовым гелем* или пастой КПТ-8 В=*0,3-2,2* Вт/см^{2*}К.

Рассчитаны зависимости изменения температуры Si пластины и Al кассеты для различных параметров плазмы и условий теплоотвода, которые хорошо совпадают с экспериментальными.

Список литературы:

[1] А. В. Постников, И. Н. Косолапов, А. Н. Куприянов, И. И. Амиров., А. Н. Магунов. ПТЭ.. № 12 (2008). 173

[2]А. Н. Магунов. Оптика и спектроскопия. Т. 73 №2, (1992) 354

[3]М. О. Изюмов ПТЭ. 2009. № 6. 54.

[4] А. Н. Магунов Труды ФТИАН Т 12 (1997). 102.

[5]С. С. Кутателадзе, Теплоотдача и гидродинамическое сопротивление. М:Энергоатомиздат,

охлаждаемого электрода. Зависимости хорошо апроксимируются как D(T)=A-B×T, где A близка к плотности мощности D(T₀) получаемой в начальный момент времени, когда

температура пластины T=T₀ и оттока тепла на электрод пока нет. В=α является

1990.

[6] P. D. Parry, J. Vac Sci. Technol. N 13 (1976) 622.

[7]Н. Айспрука, Д. Браун. М: Мир, 1987..