FEATURES OF MAGNETO-OPTICAL RESPONSE OF NANOSTRUCTURES FORMED IN VARIOUS REGIMES OF ION SURFACE TREATMENT

Prokaznikov A.V.

Dr. Sci., professor, leading researcher of the laboratory of micro- and nanosystem technology Valiev Institute of Physics and Technology, RAS, Yaroslavl Branch

(prokaznikov@mail.ru; 8-961-023-83-75)

Paporkov V.A.

PhD, docent, associate professor of the department of microelectronics Yaroslavl State University named after P.G. Demidov

Chirikov V.A.

master's degree student of the department of microelectronics Yaroslavl State University named after P.G. Demidov

Введение

APPLIED PHYSICS LETTERS %, 132506 (2010)

A frequency-controlled magnetic vortex memory

B. Pigeau,¹ G. de Loubens,^{1,ai} O. Klein,⁵ A. Riegler,² F. Lochner,² G. Schmidt,^{2,bo} L. W. Molenkamp,² V. S. Tiberkevich,⁹ and A. N. Slavin³ Service de Physique de l'East Condunit (CORS URA 2464), CEA Society, 91191 Gif-sur-Yrette, France "Physikalinche Institute (EPS). Universitär Warchweg, 99704 Warcherg, Germany "Department of Physics, Oakland University, Michigan 40:09, USA

	Journal of Magnetinas and Magnetic Materials 423 (2017) 64-80	
AND AND A	Contents lists available at ScienceDirect	
Parties .	Journal of Magnetism and Magnetic Materials	
FLSEVIER	journal homepage: www.elsevier.com/locate/journal	

Magnetic vortex racetrack memory

Liwei D. Geng, Yongmei M. Jin"

Muterials Science and Engineering Department, Midogan Technological University, Hougham, MI 49931, 1204

Figure 1. The scheme of functioning of race-track memory. It is ferromagnetic linear structure with the data that are coded as regions of magnetic domains or vortices along a nanowire.

Figure 2. Structures on the base of covered on top by cobalt silicon nanostructures after sputtering of Co (sample 1)

- (a). Structure with cobalt nanofilm on the base of anodized aluminum on silicon substrate (sample 2) –
 (b). Structure with homogeneous
 Co layer on silicon (sample 3) – (c).
 Sample PbSe after treatment in Ar+ plasma during 4 minutes – (d).
 The scheme of experiment in
- configuration of transverse
 magnetic Kerr effect (TMOKE) –
 (e).Right (f, g, h) are corresponding TMOKE dependencies δ(H) for λ = 633 nm
 k and incident angles: 25° (1), 40° (2), 75° (3); for PbSe sample:

 $52.5^{\circ} - (i), 65^{\circ} - (k).$

2

STRUCTURES ON THE BASE OF *PbSe* WITH DIFFERENT MORPHOLOGY

Figure 3. Общий General view of structures which were formed by Ar+ plasma treatment and cobalt film sputtering with the thickness 30 nm,

- (a) after 60 seconds etching in Ar+ plasma (region 1),
- (b) after 120 seconds etching in Ar+ plasma (region 2),
- (c) after 180 seconds etching in Ar+ plasma (region 3),
- (d) after 240 seconds etching in Ar+ plasma (region 4).

PROCEDURE OF MAGNETO-OPTICAL MEASUREMENTS

Wave length of incident radiation λ = 633 nm

 $\boldsymbol{\delta} = \boldsymbol{\Delta} \boldsymbol{I} / \boldsymbol{I}(\boldsymbol{O}),$

where $\Delta I = I(H) - I(0)$. Here I(H) is an intensity of light which is reflected from magnetized surface, I(0) is an intensity, which is reflected from non-magnetized surface, H is a magnetic field strength.

Значение ΔI value is proportional to the variable component of current of photo-detector. I(0) is proportional to the constant component of current, φ is an angle of incident radiation.

CHARACTER OF MAGNETO-OPTICAL HYSTERESIS LOOPS FOR *PbSe* STRUCTURES

200 нм

Figure 4. Magneto-optical hysteresisl oops That were obtained for different angles of incidence for *PbSe:*

 $30^{\circ} - (a), 52.5^{\circ} - (b), 65^{\circ} - (c)$

The loop «*b*» corresponds to the presence of vortices In the system.

STRUCTURES ON THE BASE OF SiO2 WITH DEPOSITED Co NANOLAYER

6

TWO-SOLITON APPROXIMATION OF SKYRMION SOLUTION

is radial distance from the center of skyrmion position, B_z is an induction of magnetic field along a OZ axis, *w* parameter which determines a size of skyrmion (2D skyrmion) is determined according to the expression:

$$w = 2 \cdot \sqrt{\frac{A_{ex}}{K_{eff} + M_s B/2}} \qquad c = \frac{w}{2} \operatorname{arcsin} h\left(\sqrt{\frac{2K_{eff}}{M_s B}}\right)$$

where A_{ex} is a constant of exchange interaction, K_{eff} – is an effective anisotropy constant, *Ms* is saturation magnetization. For cobalt crystal these values have an order of : $A_{ex} = 1.3 \ 10^{-11} \text{ J/m}$, $K_{eff} = 4.1 \ 10^5 \text{ J/m}^3$

Figure 6. General view of three dimensional image of $20 \times 20 \text{ nm}^2$ region, which corresponds to the presence of magnetic vortex. The direction of magnetic field B_{ext} is shown. The calculations were carried out according to the formulae presented (*) and (**). a – general view of magnetic moments orientations, b – cross section of magnetic moments orientations, c – projection of magnetic moments on OZ axis, d – dependencies of magnetic moments projection on OZ (pink) and OX axis (blue).

MAGNETIC MOMENTS DISTRIBUTION FOR TWO-SOLITON APPROXIMATION

Figure 6. General view of three dimensional image of 20×20 nm² region, which corresponds to the presence of magnetic vortex. The direction of magnetic field B_{ext} is shown. The calculations were carried out according to the formulae presented (**) and (***). a – general view of magnetic moments orientations, b – cross section of magnetic moments orientations, c – projection of magnetic moments on OZ axis, d – dependencies of magnetic moments projection on OZ (1) and OX axis (2).

LANDAU-LIFSHITZ EQUATIONS FOR MAGNETIC (SPIN) MOMENTS

Simulations on the base of Landau-Lifshitz equations

$$\frac{d\vec{M}}{dt} = -\gamma \vec{M} \times \vec{H}_{eff} - \frac{\gamma \alpha}{M_s} \vec{M} \times \left(\vec{M} \times \vec{H}_{eff}\right)$$

$$\vec{H}_{eff} = -\mu_0^{-1} \partial E / \partial \vec{M}$$

$$E = -J \sum_{\langle i,j \rangle} \vec{M}_i \cdot \vec{M}_j + \sum_{\langle i,j \rangle} D_{ij} \left(\vec{M}_i \times \vec{M}_j\right) - \mu_0 \vec{H} \sum_i \vec{M}_i - \frac{1}{2} \mu_0 \sum_i \vec{M}_i \cdot \vec{H}_d$$

where *J* is exchange constant, *D_{ij}* is parameter of Dzyaloshinskii-Moriya interaction,

M is a magnetization of i-*th* element of a mesh (i-*th* cell)

H is a vector of magnetic field strength,

 H_d – is a vector of demagnetization. Another kind of energy can be added into expression (****), for example, anisotropy crystal energy.

Figure 8. Vortex magnetic structure on cylindrical surface with flat top without anisotropy (a-d) against applied magnetic field (simulation in MuMax3).Magnetization reversal that corresponds to the structures on (a-d) – (e).

11

Figure 9. Vortex magnetic structure on cylindrical surface with convex top without anisotropy (a-d) against applied magnetic field (simulation in MuMax3).Magnetization reversal that corresponds to the structures on (a-d) - (e).

Figure 10. Vortex magnetic structure on cylindrical surface with flat top with anisotropy (0,1,0), $K = 4.4 \cdot 10^5 \text{ J/m}^3 - (a-d)$ against applied magnetic field (simulation in MuMax3). Magnetization reversal that corresponds to the structures on (a-d) – (e).

Figure 10. Vortex magnetic structure on cylindrical surface with convex top with anisotropy (0,0,1), $K = 4.4 \cdot 10^5 \text{ J/m}^3 - (a-d)$ against applied magnetic field (simulation in MuMax3). Magnetization reversal that corresponds to the structures on (a-d) – (e).

EVALUATIONS OF ENERGY LOSSES ON MAGNETIZATION REVERSAL

 $E_{vor} - E_0 = \pi n^2 J In(R/a)$

where E_0 is an energy of ground state in a ferromagnetics, $E_0 = 2JN$, n = 0, 1, 2, ...,

J is an exchange integral, R is a characteristic size of a system,

a – is a distance between atoms.

 $\mathcal{E} = \oint \vec{H} d\vec{B}$ are specific energy losses on magnetization reversal.

For pure cobalt film with the thickness of 10 nm evaluations give the value $\epsilon_{Co}\approx 23\cdot 10^3~J/m^3$

Evaluation of specific energy losses for magnetization reversal in the presence of magnetic vortices has an order of $\mathcal{E}_V \approx 41.10^3 \text{ J/m}^3$.

Evaluation of specific energy losses for magnetization reversal without the magnetic vortices has an order of $\mathcal{E} \approx 61.10^3 \text{ J/m}^3$.

ТЕРМОДИНАМИЧЕСКИЙ ПОТЕНЦИАЛ И СООТВЕТСТВУЮЩИЕ МАГНИТНЫЕ СТРУКТУРЫ

$$P(m) = \frac{1}{2}a(T)m^{2} + \left(\frac{1}{4}b - \frac{\lambda^{2}}{2K}\right)m^{4} + \frac{1}{6}cm^{6}$$

$$\left(\frac{1}{4}b - \frac{\lambda^2}{2K}\right) > 0$$

$$\left(\frac{1}{4}b - \frac{\lambda^2}{2K}\right) < 0$$

K is an elastic modulus, λ is a connection coefficient, b is a coefficient

Yang S., Ren X., Song X. Phys. Rev. B. 2008. V.78. P. 174427.

Figure 12. Small magnetic fields

THERMODYNAMIC POTENTIAL AND CORRESPONDING MAGNETIC STRUCTURES

Figure 13. Large external magnetic fields

CONCLUSIONS

- 1. Normalized magneto-optical hysteresis loops, that were obtained at different Incident angles, for the structures with sizes less than 100 nm, are congruent.
- 2. For nanostructures on the base of PbSe at determined parameter values magneto-optical loops were obtained that are typical to the presence of magnetic vortices in the system.
- **3.** For the sub-micron structures the displacement of hysteresis loops was observed which can be connected with the influence of interaction of the system elements with surroundings.
- 4. Two-soliton solutions approximations for skyrmion solution were obtained.
- 5. The position of magnetic vortex on a cylindrical surface depends on external magnetic field value.
- 6. Magnetization reversal at the presence of magnetic vortices occurs with less losses of energy then without magnetic vortices appearance.

Speaker: Prokaznikov A.V. E-mail: prokaznikov@mail.ru; WhatsApp: 8-961-023-83-75