INFLUENCE OF ION IRRADIATION ON THE MAGNETIC PROPERTIES AND DOMAIN STRUCTURE OF THIN CoPt FILMS

Section 4 Poster 4

I.L. Kalentyeva¹, O.V. Vikhrova¹, Yu.A. Danilov¹, Yu.A. Dudin¹, A.V. Zdoroveyshchev¹, A.V. Kudrin¹, M.V. Dorokhin¹, Yu. M. Kuznetsov¹, M.P. Temiriazeva², A.G. Temiriazev², A.V. Sadovnikov³, P.A. Unin⁴

¹Research Institute for Physics and Technology, Lobachevsky State University of Nizhny Novgorod;
²Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences, Fryazino;
³Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow;
⁴Institute of Physics of Microstructures RAS, Afonino village, Kstovsky district.

Introduction

The possibilities of controlled exposure of ion irradiation (He⁺ with energy of 20 keV and a fluence in the range from 2×10^{14} to 1×10^{15} cm⁻²) as a method for modifying the magnetic properties and domain structure of CoPt(2/5) films have been investigated. The conditions for the activation of the formation of skyrmion states

in these films are established.

Preparation of samples

Structures were irradiated on the ILU-3 accelerator with 20 keV He⁺ ions, the fluence value (*F*) varied from 2×10^{14} to 4×10^{14} cm⁻².

Experimental techniques

- The magneto-optical Faraday effect $Q_F(H)$ at a laser wavelength of 980 nm was investigated.
- Magnetization *M* of the samples was measured by a magnetometer with a alternating field gradient in the field range of ± 1700 Oe.
- The crystal structure of the films was investigated by X-ray diffraction in symmetric Bragg-Brentano geometry.
- The domain structure of the samples was studied by magnetic force microscopy (MFM) using a probe with a low magnetic moment. The changes in the domain structure, leading to the formation of skyrmions, were carried out by MFM scanning with a probe with a high magnetic moment [1].
- The value of the energy of the Dzyaloshinskiy-Moriya interaction (DMI) was estimated.

Results and discussion

The composition of the obtained alloy

First, a region of $2\times 2 \ \mu m^2$ is scanned in two passes, and the film undergoes partial magnetization reversal in the scanning region under the effect of the probe. Then a larger region ($5\times 5 \ \mu m^2$) is scanned in one pass at a distance of about 100 nm above the surface [1].

is $Co_{0.35}Pt_{0.65}$ (estimated using a linear approximation).

2Theta, deg.

Fig.1. X-ray diffraction pattern of the original CoPt (2/5) film. The figure shows the tabular positions of the peaks for different stoichiometry.

Fig.2. a) Magnetic-field dependences of the Faraday $Q_{\rm F}$ angle and magnetization *M* of the initial CoPt(2/5). Magnetic field applied perpendicular to the film surface. *b)* Dependences of the coercive field $H_{\rm C}$ and relative residual magnetization $M_{\rm R}/M_{\rm S}$ on the helium ion fluence.

Таблица 1. Parameters of the initial and irradiated (with dose F) films (shift between the Stokes and anti-Stokes spectral components, Δ , and DMI constant) obtained by Mandelstam–Brillouin spectroscopy.

F, cm^{-2}	0	2×10 ¹⁴	3×10 ¹⁴	4×10 ¹⁴
Δ , MHz	216	244	235	496
DMI, mJ/m ²	0.281	0.316	0.448	0.644

Tel. +79202920787

Работа выполнена при частичной поддержке грантов президента РФ (МК-445.2020.2), РФФИ (гранты 18-29-19137_мк, 20-38-70063-Стабильность) и гос. задания (проект 075-03-2020-191/5).

For a film irradiated with $F = 4 \times 10^{14}$ cm⁻², the MSM image shows a small number of isolated circular domains (skyrmions), and narrow (~ 100 nm) stripes with "reverse" magnetization - 360-degree domain walls (1D- skyrmions).

The most probable reason for the enhancement of DMI can be the asymmetric mixing of Co and Pt atoms due to ion irradiation, which leads to a decrease in the perpendicular anisotropy of magnetization and promotes the activation of the formation of skyrmion states.

[1]. Темирязев А.Г. и др. // ФТТ. Т.60, Вып.11. С.2158-2165 (2018).