Nitrides vs Oxides: Ion-induced Damage Formation in GaN and Ga₂O₃

¹A.I. Titov, ¹K.V. Karabeshkin, ¹P.A. Karaseov, ^{1*}A.I. Struchkov, ²A.I.Pechnikov, ²V.I.Nikolaev, ³A. Azarov, ⁴D.S. Gogova

¹ Peter the Great St.-Petersburg Polytechnic University, St.-Petersburg, Russia

² Perfect Crystals LLC, St Petersburg 194064, Russian Federation

³ Centre for Materials Science and Nanotechnology, University of Oslo, Norway

⁴ Central Lab of Solar Energy at the Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

*andrei.struchckov@yandex.ru

The damage accumulation in three gallium compounds: α -Ga₂O₃, β -Ga₂O₃ and GaN during P ion irradiation at room temperature was experimentally studied and compared. The main differences in the radiation accumulation of structural defects in these semiconductors are revealed. We conclude that GaN and α -Ga₂O₃ are much more radiation resistant when irradiated with ions of medium masses than β -Ga₂O₃. This study builds upon our previous works on radiation damage in β -Ga₂O₃ [1,2].

Experimental

All epilayers have been grown on *c*-plane sapphire substrates, GaN by MOCVD, corundum α -Ga₂O₃ in hot-wall HVPE reactor. Monoclinic β -Ga₂O₃ was commercial specimen cut from single crystal edge-defined film-fed grown by Tamura Corporation. Samples have been irradiated using 500 kV HVEE implanter by 40 keV P⁺ ions in a wide dose range. All the implants were carried out at room temperature (RT) and at 7° off the channeling directions. The ion doses were normalized to the average number of displacements per atom (DPA). Values of DPA were calculated using TRIM code (version SRIM 2013) [3] with effective threshold energies for atomic displacements of 25 eV for all Ga, O and N sub-lattices. Implantation-produced disorder was by Rutherford backscattering/channeling (RBS/C) measured spectrometry with 0.7 MeV ⁴He²⁺ ions incident along the channeling direction and backscattered to 103°. The effective number of scattering centers (referred to below as "relative disorder") was deduced from RBS/C spectra using one of the conventional algorithms [4]. The parameters of irradiations used in this study are presented in Table 1.

Target	Fluence range 10 ¹⁴ cm ⁻²	Dose range DPA	Flux 10 ¹² cm ⁻² ×s ⁻¹	Dose rate 10 ⁻³ DPA×s ⁻¹	1 DPA 10 ¹⁴ cm ⁻²
α-Ga ₂ O ₃	0.9-43.3	0.15-6.9	1.51	2.4	6.3
β-Ga ₂ O ₃	0.9-11.1	0.15-1.8	1.51	2.4	6.3
GaN	5-150	1.0-29	1.9	3.6	5.0

Table 1. Irradiation parameters.

RBS/C Spectra

Fig. 2. Relative disorder vs. depth for GaN, and α - and β -Ga₂O₃ targets. Vacancy generation functions are shown in arbitrary units by dashed lines. See inset for details.

Fig. Dose dependence of 3. thickness the surface Of disordered layer in GaN as well as α - and β -Ga₂O₃ implanted at RT with 40 keV P ions.

Fig. 4. Dose dependence of bulk

Conclusions

 \triangleright Metastable α -Ga₂O₃ has been shown to have a high radiation damage resistance in comparison to β -Ga₂O₃.

> Damage accumulation rate in the crystal bulk and at the surface of β -Ga₂O₃ is about an order of magnitude higher than those of α -Ga₂O₃ and GaN.

 \succ In the β -Ga₂O₃ BDP is situated at the position of maximum of primary defect generation, while in α -Ga₂O₃ – near the maximum of implanted atom distribution. The position of the maximum of BDP formed in β -Ga₂O₃ and α -Ga₂O₃ only slightly changes with the ion dose, in contrast to GaN.

 \succ The bulk defect peak saturation level for both Ga₂O₃ polymorphs is approximately twice higher than that for GaN (0.9 vs. 0.45).

- 1. Karabeshkin, K.V., et al.: Comparative Study of Ion-induced Damage Formation in GaN and beta-Ga2O3. // International Youth Conference on Electronics, Telecommunications and Information Technologies, Proceedings of the YETI 2021, St. Petersburg, Russia (Springer, 2021, in press).
- 2. Karabeshkin, K.V., et al.: Molecular Effect in Damage Formation in β-Ga2O3. // International Youth Conference on Electronics, Telecommunications and Information Technologies, Proceedings of the YETI 2021, St. Petersburg, Russia (Springer, 2021, in press).

3. Ziegler, J. F.: SRIM-2013 software package, available online at http://www.srim.org.

4. Schmid, K. Radiat. Eff. 17, 201 (1973).