

The XXV International Conference on Ion-Surface Interactions (ISI–2021)

Influence of helium on deuterium content in W-D-He co-deposited layers

S. Krat¹, E. Fefelova, A Prishvitsyn¹, Yu. Gasparyan¹, A. Pisarev¹

¹National Research Nuclear University "MEPhl", Moscow Kashirskoe sh. 31, 115409, Russia

T (K) • He/W below detection range for 5% He/D • He/W \uparrow at T=800K → He bubble formation is a possible explanation • He/W comparable with D/W, even with He/D=20%	600 800 1000 1200 1400 400 600 800 10 temperature (K) temperature (K)	implantation experiments [4]. Data for 20% He experiments closer to ion implantation spectra after atmospheric exposure.
4. CONCLUSIONS	 highest T_{deposition} = 800 K. D/W=0.5 at. % for 5% He. Deuterium content vs. deposition temperature curves are• 	the same trapping sites 20% He is enough for the He desorption spectra to
 In general, 5% He increases D2 content in co-deposite layers, while 20% He decreases D2 content. Significant D content (D/W ≥ 0.3 at. %) can be observed 	 ed non-monotonous when He is present Adding 5-20% He suppresses D2 desorption at high at temperatures, possibly due to D₂ and He competition for 	resemble data for pure He/W co-deposition and ion implantation experiments. It's likely that 20% He significantly affects film's structure.
5. FUTURE PLANS (IN THE WORKS)	 Study co-deposits with 10 and 15 % He gas mixture content Study co-deposited film structures in order to explain the observed effect 	ts (He bubble formation, etc).
6. REFERENCES	 Vacuum. 149 (2018) 23–28. doi:10.1016/j.vacuum.2017.12.004. [3] S. Krat, E. Fefelova, A. Prishvitsyn, Y. Vasina, Z. Harutyunyan, Y. Gasparyan, et al., Helium accumulation in tungsten layers deposited in Ar- He magnetron discharge. J. Phys. Conf. Soc. 1686 (2020) 012020. doi:10.1088/1742.6506/1686/1/012020. 	7. Acknowledgements
 S.A. Krat, A.S. Popkov, Y.M. Gasparyan, Y.A. Vasina, A.S. Prishvitsyn, A.A. Pisarev, A setup for study of co-deposited films, J. Instruction (2020) P01011–P01011. doi:10.1088/1748-0221/15/01/P01011. S. Krat, Y. Gasparyan, Y. Vasina, A. Davletiyarova, A. Pisarev, Tungsten-deuterium co-deposition: Experiment and analytical description. 	 In the magnetion discharge, 3. Phys. com. Sei. 1000 (2020) 012020. doi:10.1000/1742-0390/1000/17012020. Y. Gasparyan, S. Ryabtsev, V. Efimov, Z. Harutyunyan, A. Aksenova, A. Poskakalov, et al., Helium retention in tungsten under plasma and ion beam irradiation and its impact on surface morphology, Phys. Scr. T171 (2020) 014017. doi:10.1088/1402-4896/ab4068. 	 This work was supported by the Russian Science Foundation, Grant №17-72-20191